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A~tract--First, the influence of the unsteady forces (the pressure gradient, the virtual mass effect and 
the Basset history term) on the complex velocities ratio of the fluid and of the dispersed phases has been 
studied. To this end, the particle momentum equation is linearized for small oscillating motion of the two 
phases which are at rest in the reference state. It is shown that the unsteady terms are of great importance 
when the coefficient Z, mass density of the particle divided by the mass density of the fluid, becomes small. 
A particular study of the Basset history term is also investigated. Then, a two fluids theory, including 
viscous and thermal losses effects, is developed for calculating the velocity and the damping of the sound 
propagating in a two-phase flow. As the former treatment, the classical equations of the multiphase flows 
are linearized and the dispersion equation of the acoustical wave is obtained. Several tendencies and the 
special part played by the Basset history term in acoustics are pointed out. 
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I N T R O D U C T I O N  

The unsteady terms in the expression o f  particles drag are often neglected in the equations o f  
moving  mult iphase flows. When  the flow mot ion  is well established, the main force acting on a 
particle is the viscous Stokes drag whose expression is well-known for small Reynolds numbers.  
The Reynolds number  is defined by: Re = dVrcffv where, d is the particle diameter, Vre~ is the relative 
velocity between the fluid and the sphere far away from the particle and v is the fluid kinematic 
viscosity. In this theory the particles are taken to be rigid and spherical and there is no interaction 
between them (Germain 1962; Fort ier  1967). The flow is irrotational and the surface tension is 
supposed to have no influence. With these assumptions,  the particle acceleration is propor t ional  
to the local relative average velocity between the fluid and the particle and a kinetic relaxation time 
appears (Kuen tzmann  1973). This relaxation time rv depends on the coefficient o f  Stokes formula.  
It is also used in the expression of  the ent ropy product ion  rate for the flow when the Onsager 
linearized theory is applied (P rud ' hom m e  1988). 

Spherical rigid particles are not necessarily solid, some liquid droplets can remain spherical in 
hard condit ions when their diameter and their capillarity number  are small enough (Feuillebois 
1991). I f  the particles are not  o f  spherical shape, it is necessary to introduce a shape factor. 

In Stokes flows, the only modification o f  ~v may not be sufficient to take into account  possible 
unsteady effects. The problem is no longer linear and other terms must  be added to the Stokes drag. 
I f  the particle is rigid and if it does not  rotate, these terms are: the pressure gradient, the virtual 
mass effect, the weight and the Basset history term. I f  the particles concentra t ion is small and if 
the particles do not  modify the velocity o f  the fluid, the two first terms are easy to evaluate. The 
Basset term is much more  difficult to derive in the general cases (Rusanov 1953; Fortier  1967). 
Nevertheless, in a linear (small amplitude) oscillatory situation, the Basset integral easily reduces 
to a simple form (Landau & Lifshitz 1971). Experimental studies and more recently direct numerical 
simulations give a proper  unders tanding o f  the different forces influences (Rivero et al. 1991). 

The net force in Stokes flow (Re ,~ 1) is different f rom the net force at higher Reynolds numbers.  
Indeed, some coefficients must  be introduced such as: the Reynolds number  and the acceleration 
number  (Clift et al. 1978; Rivero 1991). 
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In the first part of this paper, we study the respective influences of the previous terms on the 
ratio particle velocity/fluid velocity. The motion is oscillatory, time dependent and eventually space 
dependent, its amplitude being small (Pmax/Po ~ 1, Pm,~ is the maximum pressure perturbation 
and Po is the pressure in the reference state). The linearization of the particle dynamical equation 
leads to the expression of the complex velocities ratio for the particle and the fluid as a function 
of the product oz  (o is the angular frequency, ~ the time defined by ~v/)~ and X the mass density 
ratio Pps/Pgs). The study in the complex plane shows that the ratio of the velocities moduli is 
sometimes very different from unity and the phase-lag between the two velocities is not always 
negligible. 

In the second part, a theory is developed, on the base of a two fluids model, for studying the 
influences of the different forces on the propagation and the damping of sound in two-phase flows. 
In elastic media (water, air, etc.), the sound propagates nearly without damping. That is no longer 
the case for porous, soft or multiphase media (Matras 1972). Indeed, the exchanges of momentum 
and energy between the two phases yield energy loss effects. 

The propagation of sound has been investigated by many authors. A part of the published papers 
is relating to sound propagation in bubbly flows (Hinze 1975; Clift et al. 1978; Biesheuvel & 
Wijngaarden 1984; Wijngaarden & Kapteyn 1990; Sangani et al. 1991). These differ in their 
approach compared to the present paper which is relating to condensed particles in a fluid phase. 
Gregor & Rumpf (1975), using mass and momentum balances, show that the velocity of sound 
depends on the relative velocity between the two phases, on the ratio of densities, on the particles 
concentration, on the particle diameter, on the drag coefficient and on the frequency of sound. 
Some authors express the sound velocity using a thermodynamic method (Michaelides & Zissis 
1983). Allegra & Hawley (1972) introduce wave equations (compressional, thermal and viscous 
waves). Some studies use a method of linearization with introducing a complex wave-number 
(Atkinson & Kytomaa 1992), that is the kind of approach which is chosen here. 

In this second part, the considered fluid is a gas. The compressibility effects and the thermal 
exchanges are no more negligible. These thermal exchanges are characterized by a thermal 
relaxation time called ~. We use the former treatment but now the small oscillating perturbations 
are explicitly time and space dependent. The model requires the wave-length to be large compared 
to the particle radius: ra ~ 2. Indeed, if this inequality is not satisfied, many others phenomena 
occur such as the wave reflection on the particle. Furthermore, the physical properties would 
not be uniform at the surface of the sphere, Let us introduce the acoustical Reynolds number: 
Re c = or, Iv. As c = f 2  (c is the sound speed and f is the frequency of the acoustical wave), the 
condition r, <~ 2, may be written: r~o <~ Re c. 

Throughout  the calculations, the following general assumptions are made. The studied medium 
consists of a two-phase suspension: a fluid phase (newtonian fluid) and a dispersed phase. The 
subscripts "g" and "p"  stand respectively for the fluid and the particles. The particles distribution 
is supposed to be statically homogeneous so that the isotropy condition is satisfied. The gas volumic 
fraction, called e, is nearly equal to unity in the case of a suspension. The particles occupy a small 
volume in the mixture, hence the interactions terms between them are overlooked (distance effects, 
collisions). We admit that a statistical study of the suspension is feasible and it is assumed that 
the particles as well as the fluid phase constitute a continuum. Finally, we suppose that the particles 
have all the same diameter and that the volume forces, except the gravity and the Archimedes force, 
are negligible. 

PART 1. E Q U A T I O N  OF MOTION FOR THE P A R T I C L E S  
AND LINEAR ANALYSIS  OF V ELO CITIES  FOR 

SMALL O S C I L L A T I N G  P E R T U R B A T I O N S  

Let us define a kinetic relaxation time as being the ratio between the particle momentum in 
the fluid frame and the modulus of the fluid-particle interaction force: fp (Lupoglazoff 1989). 

FF/p Ure I 
~, - [l] 

/I L Ik 
where mp is the mass of the particle. 
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Thus, if rv is large compared to the characteristic time "1- of the fluid motion, then the average 
motion of the dispersed phase is slightly influenced by the local conditions of the flow (vortices, 
vibrations, etc.). But if Zv is much smaller than T, then the particles cloud motion follows perfectly 
the fluid flow. 

In a monodisperse suspension, the simplified motion equation, without body forces, is: 

dov p = Vg - -  Vp [2] 
dt Zv 

where the do( )/dt term denotes the material time derivative following the moving sphere with 
the velocity %: dp( )/dt= @( )/@t + vp-gTd'd ( ) .  Some more complete expressions, valid for low 
Reynolds number, take into account other effects and the final equation for the momentum 
interaction force takes the form (Tchen 1947; Corrsin & Lumley 1956; Hinze 1975; Clift et al. 1978; 
Maxey & Riley 1983): 

dpvp 2 ~ fdpvg dp%'] 
~gr3 pPs~-=6glgra(Vg--VP)-k-srcr~pgs\-~ dt J 

(a) (b) 
(dpvg dpvp~ 

/ '  \ dt '  d t ' / / d t '  + 4 ltr~ppsg, [3] _4nr~g~d(p)+6ra  ~x/~gs~ ) ~ t - t "  

(c) (d) (e) 

the letters (a)-(e) referring to the different terms of the second member. 
As mentioned above, the particle does not rotate. Equation [3] does not contain any inter- 

particular pressure term since all particles interactions are neglected. Note that more sophisticated 
expressions contain other forces, such as the Faxen term (Gatignol 1983) or take into account the 
effect of compressible external flow on the added-mass term (Maxey & Riley 1983). 

Meaning of the different terms of [3] 
First member: acceleration of the particle. 

Second member: 
(a) Stokes drag. For a spherical rigid particle of diameter d, if the density and the viscosity of 

the fluid are constant and if the inertia forces are negligible compared to the viscosity forces, that 
is to say: Re = dVrc~/v ,~ 1, then the Stokes drag force is equal to: 

fv = 6rc#r~ ( V g  - -  Vp) [4] 

where /~ is the fluid dynamic viscosity, (g) and (p) are related respectively to the fluid and the 
particles in the mixture. 

The coefficient rv, previously introduced, has the following value: 
2 

-~ r a 

~, = 9 pg~ ~ [5] 

where pg~ is the specific mass density of the fluid. 
Fortier (1967) shows that: 

[inertia forces I 
< Re/6 

[ Stokes drag[ 

If Re > 0.1 the inertia forces can no more be neglected. Moreover, if Re increases then the 
unsteady and dissymmetric characters of the flow become important. When Re is very large, fp may 
be written as a bounded expansion of increasing powers of Re. 

The drag force for a spherical particle constituted of a fluid viscosity /~2 put inside a fluid of 
viscosity/~, is (Fortier 1967): 

2 + 3 f f  
f~ = 4rtr,/~l ~ (Vg - vp) with ~k = 1~2/I~ I [6] 
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For a liquid droplet in a gas: ~ ~ oc: fv = 6rcra/-q (Vg - vp). And for a bubble in a liquid: ~ ---* 0: 
fv = 4nr~/.q (vg -- vp). 

(b) Virtual mass effect. The force exerted by an incompressible perfect fluid at rest on a isolated 
sphere moving with the unsteady velocity vp is: 

dpvp [7a] 
F = - C 4 r t r ~ p g s  d t  

C is the added mass coefficient. For a spherical rigid and isolated particle: C = 1/2. This force 
means that a virtual mass must be added to the particle. If the fluid velocity is Vg, then the force 
imparted by the fluid on the sphere is given by: 

fdpvp 
F = - c 3 nr,pg~ ~ -(It dt ] [7b] 

A more complete theory shows that C is a second order tensor (Drew et al. 1979). If the flow 
is locally isotropic C is a scalar. Other studies show that C depends on the particles concentration 
and on the geometrical configuration of the suspension. Its value decreases if the number of 
particles increases. For a random distribution of monodisperse particles, C = c/2 (Atkinson & 
Kytomaa 1992). C seems to be independent on the Reynolds number and on the acceleration 
number whose expression is: 

, dpvp dpvg [81 
A c =  VTel/(2r~a), with a = dt dr 

Since we suppose that the net force exerted on the particle is a sum of several terms of different 
and independent physical origins, [7b] may be used for the total force applied to one or several 
particles. Some authors find some expressions which are sometimes a bit different. Drew et al. 
(1979), saying that the virtual mass force must be objective, agree with the previous expression in 
the case of  a spherical droplet accelerated in a quiescent fluid. But they find a result with an opposite 
sign for a spherical bubble moving in a liquid at rest. Nevertheless, we use the classical result of [3] 
which is used by many authors. 

(c) Pressure gradient. The pressure gradient is supposed to be uniform around the particle. 
The resultant force is: 

F = - ~ p n d S  = - f o g r a d ( p ) d V = - g r a ' d  (p) 3 ~r ~ [9a] 

is the surface sphere, o its volume and n is the unit outward normal. 
If we suppose, in first approximation, that the presence of the particles does not modify the 

flow locally, then the pressure gradient can be derived from the momentum equation of the fluid: 

dgvg 
--g-rg'd (p) = P~ d T- - Pg~g [9b] 

where g is the gravity acceleration vector. 
The local velocity of the fluid being Vg, we have: dg( )/dt = 0( ) /& + Vg. g~a'd ( ) .  
Thus: 

, _ g) F =~=r2 Pg~\ dt [%1 

(d) Basset history term. Some complicated algebra (Maxey & Riley 1993) gives the following 
expression: 

{dpvg dpvp'~ 

/ ~  f '  k dt '  d t '  } 
F = C n r ~ x / r r v p g  ~ | ~ 7  - - -  d t '  [10] 

.)0 x/ t  -- t '  

This term represents the history of the viscous effects on the particle. Ca = 6 when Re ~ 1 and 
& ~ l ([8]). 
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(e) Weight of  the particle. 
Now, let us note: 

r~ 
Pp~/Pg~ = Z and z = ~pgs~-, [! 1] 

Z being the ratio of mass densities (rv = vZ). Then the particle motion equation is: 

dpvp !(dpvg dpvp'] dgvg 3~ ['\dt' :=dt'/dt' [12a] 
zr -S / -=v ' -vP+z \d t  dt j0 , , f i -C 

Projecting on the horizontal plane and admitting a one-dimensional motion, (% = voi, Vg = vgi, i 
is a horizontal unit vector), the previous equation may be written: 

Xz--~ - Vg--VP+2\  dt ~ ) + z ~ - +  d t _ t  ' 

To study the influence of the different terms of [3] on the particle motion, the velocities are 
perturbed from their steady state value by some small amount. The steady state being indicated 
by the subscript (o), the respective total velocities of the fluid and the particles are: 

Vg = Vg o + v~ [13a] 

vp = %0 + v~ [13b] 

v~ and v~ are the velocities perturbations. Choosing a steady state at rest, it follows that: 
Vgo = 0 and Vpo = 0. 

At the first order approximation, [12b] becomes: 

c~v~ v'g--v~ l(Ov'g OV'p'~ 1 ~3V'g + 3 N/-~ f;  \c~t' cttJdt. [14] 
0t -  ,v + \ot ot l + :z , / t  Z t-; 

Some small periodic perturbations are chosen in the form: 

v'~ = Vg exp( iegt ) [15a] 

Vp = Vp exp(icot) [15b] 

(see also Hinze 1975, who represents Vg and v o by a Fourier integral). 
Since the flow is one-dimensional and incompressible, these terms are independent of the 

position. For a compressible fluid, Vg and V o are position dependent. It should be noted here that 
[3] has been formulated for an incompressible fluid. Some authors have found semi-empirical 
formulae to take into consideration the compressibility of the fluid. Nevertheless, these corrections 
are not necessary for small perturbations (Kuentzmann 1973). So whether the fluid is compressible 
or not, we may write: 

ie)zrVp= Vg-  Vp+i~o2(Vg-  V~)+io)rV~+3 r exp(-ie) t) ie)  . t / - ~ _  ¢P:exp(ie)t )at" 

(a) (b) (c) (d) [16] 

The Basset history term must be time independent, its value is evaluated for t rising to infinity. 
Physically, it is equivalent to suppose that the oscillatory regime is established and to ignore the 
establishment transient modes. With an appropriate variable change, the Fresnel integrals appear. 
Finally, the ratio of the complex velocities is given by: 

v_~'o = l + ~ i~z +3(i  + 1 ) ~  [17a] 

v~ l +(Z + ½)icor +~( i  + l ) x / ~  

Writing z as the left hand side of this equation and F(Z, ~, r) as the right hand one, then: 

z = F(Z, cot) = f ( z ,  ~or~) (z~ = Xr) [17b] 
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In the analysis, the integrated formula for the Basset force is used. A more simple method may 
be used for the specific case of a sphere oscillating in translation in a fluid. This method, used by 
Landau & Lifshitz (1971), leads to the expression of the force applied to the moving particle. It 
is also necessary to take into consideration the component  of  the instantaneous pressure gradient 
(Maxey & Riley 1983; Gatignol 1983; Atkinson & Kytomaa  1992). The complex velocities ratio 
calculated with this total force, whose expression is valid for any time t, is identical to our result. 
Thus the assumption of infinite time t, necessary in our treatment for the Basset history calculus, 
is not restrictive. 

When looking at the function F, it can be shown that if coz is different from zero, then the values 
of  the velocities are different and a phase-lag between those velocities appears. Let us study that 
function. There are two limiting cases, corresponding to extreme values of  cot: 

cot tends to zero 

This situation occurs when co is very small or when the relaxation time decreases. In the first 
case, the perturbation is very slow. In the second case, the particles get smaller and smaller. In 
both cases, the particles follow perfectly the carrier fluid velocity, thus the suspension is in an 
equilibrium state. In the next, the subscript (e) refers to this equilibrium state: 

lim z = ze [18] 
o)z ~ 0 

cot approaches infinity 

When co approaches infinity, the perturbation is so fast that there is not enough time for the 
particles to react. For large relaxation times, the particles are very big or they may have a very 
large mass density. This case can also occur when the fluid viscosity is very small since the fluid 
slides over the particles without being able to drag them well. In all those examples, the particles 
do not react to the velocities fluctuations of  the fluid. Thus, the particles behave like an obstacle 
placed in the flow. This second limiting case corresponds to a flow that is called "frozen",  indicated 
by the subscript (oQ): 

lim z = z.~ [19] 

The function z is studied in the following section. Starting with only the drag force, then other 
different terms are added. 

(a) S tokes  drag. When the term (a) is only present in the second member of [17a], it is 
obtained: 

I 
z - 1 + izcor'  [20a] 

That  is the equation of a circle, whose radius is 1/2 and centred in (x = 1/2, y = 0), x and y 
being respectively the real and imaginary parts of  the complex number z. The only half-circle, 
corresponding to negative values of  y, is described in the direct way for increasing values of cot 
(figure l). 

¢o't = ~ 

I 

t~ ¢ 0 ~ = 0  
} I 
2 3 

Re  (z) 

- I  

F i g u r e  1. z in the  c o m p l e x  p lane .  T o t a l  force  = S t o k e s  d rag .  
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ze = 1, z ,-~ ! - icoz;( for  ~oz ,~ i [20b] 

z~--- 0 [20c] 

(b) Stokes drag and pressure gradient. For  this case, the terms (a) and (c) are present,  the 
following result is obtained:  

1 +i~o~ 
z - - -  [2 ! a] 

I + ix~oz 

The  representat ive curve is the upper -ha l f  circle for Z smaller than unity and the lower half-circle 
for X larger than  unity. For  ;( = 1, one obtains  the point  (x = 1, y = 0). The very great  impor tance  
o f  the pressure gradient  for  small values of  ;~, that  is to say for particles which are lighter than 
the fluid, is observed.  Fo r  Z = 0, the curve is the vertical upper  half-line. For  increasing values of  
X, the half-circle of  figure 1 is found again. Figure 2 shows the function F(;~, toz) in the complex 
plane for the following values o f  Z:X = 0 ,  ;~ =0 .25 ,  ;( =2 .5 ,  X---' ~ .  The  point  (x = l , y  = 0 )  
belongs to all the curves. 

z e = l ,  z , . ~ l + i e ~ z ( 1 - - g )  for ogz<~l [21b] 

z~ = 1/z [21c] 

zoo is now Z dependent .  

(c) Stokes drag, pressure gradient and virtual mass. The only missing term is the Basset history 
term (d): 

1 + 3 icoz 
z = [22a] 

1 + (Z + 1/2)i~or 

The representat ive curves are still half-circles passing all by the point  (x = 1, y = 0). The curves 
have been plot ted for  the previous values of  ;~ (figure 3), they are now in a finite zone. The  limiting 
cases Z = 1, giving the point  (x = 1, y = 0) and Z ~ ,  giving the lower half-circle whose radius 
is equal  to I/2, centred in (x = 1/2, y = 0) are unchanged.  

z e = l ,  z , - ~ l + i o g r ( 1 - Z )  for ogz ,~ l  [22b] 

z~ = 3/(2x + 1) [22c] 

(d) The whole terms. The expression of  z is ([17a]): 

l + ~iogz + ~(i + 1 ) V / ~  
z = [23a] 

1 +(x + ~) i~ +~(i + 1)~/L~ 

0 

1 - 

z=2 .5  I I I 
~ . ~  2 3 4 

Re (z) 
) ~ = 0 c  

- 1  -- 

Figure 2. z in the complex plane. Total force = Stokes 
drag + pressure gradient. 

IJMF 21 'I-~-S 

~ 7¢ =2.5 

I X x x ~  Re (z) 

Figure 3. z in the complex plane. Total force = Stokes 
drag + pressure gradient + virtual mass effect. 
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I w- 

X= 0 

" - " 7 '  2 3 
Re (z) 

- I  ~ X = ~  
Figure 4. z in the complex plane. Total force = the whole terms. 

The curves are no longer circles. The expression of  the imaginary part of  z shows that its sign 
is opposite to the sign quantity of  (% - 1). For X rising to infinity, y is negative and only the 
half-circle y < 0 is valid. We observe a flatness of  the different curves compared to the previous 
cases (figure 4). The limit curve for Z ~ is identical to the curves of  figures 1, 2 and 3. 

To study more precisely the Basset term, the z modulus and its argument (phase-lag between 
vp and Vg) have been plotted. Two cases have been distinguished. In the first one, we take all the 
forces, in the second one we neglect the Basset force. These curves are plotted as a function of  the 
square root o f  the reduced angular frequency ~ (the most little power of  ogr in [23a]). From 
figure 5, showing the ratio of  the velocities moduli,  one can see that the less heavy particles C~ < 1), 
moving faster than the fluid, go slower when the Basset force is applied to the particles [figure 5(a)]. 
That is the inverse on a little zone corresponding to very small values of  ~oT [figure 5(b)]. The 
particles, which are heavier than the fluid (X > 1), move slower than it (Iv'o/v'gl < 1). Now,  the 
Basset term presence makes the particle velocity larger [figure 5(a)], except on a small range of  low 

-'=~'-w 

(a) 

# 
x ' O  

s 
s s"  

s" 
X = 0.25 

l l l l  l . .  " ~ " 

X - 2.5 

I s 

i 

0 
1 I 1 
5 10 15 

Figure 5(a). IV'p/V'g I as a function of  x ~ "  Without the Basset term ( 

I 
20 

), the whole terms (- ). 
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z=O 

X=2.5 

/ i  / J  
/ / /~. , /  

/ / /  i / " ~  
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)~ .---ip- oo 

] 
0 . 2 5  0 . 5 0  0 . 7 5  1 . 0 0  
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x 
\ 

\ 
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\ 
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x 
x 

x \  

I I " 

Figure 5(b). I v;Iv'~l as a function o f , ~  for very small values of xf~ .  Without the Basset term ( 
the whole terms ( - - ) .  

values of  mr [figure 5(b)]. We note on figure 6 that the phase-lag between v; and v~ is positive when 
the particles are lighter than the fluid and negative in the inverse case. The Basset term first reduces 
the phase-lag intensity and makes it larger after a certain frequency depending on g. 

z e = l ,  z ~ l + i m z ( 1 - - ) )  for e ) z , ~ l  [23b] 

z~ = 3/(2 g + 1) [23c] 

The study of  the limiting cases shows several things. I f  ~oz tends to zero, then the function F is, 
as planned, almost equal to unity and Vp = Vg. We have got the same result (except in case a) for 
any co when X is equal to unity, since the two components have the same mass density. 

For  large values of  car, the particles move quicker than the fluid if they are lighter than it, slower 
if they are heavier. That  is not the case if the only force applied to the particles is the Stokes drag 
force since z~ is Z independent (z~ = 0 and v~ = 0). 

P A R T  2. P R O P A G A T I O N  A N D  D A M P I N G  OF AN A C O U S T I C A L  WAVE 
IN A C O M P R E S S I B L E  T W O - P H A S E  FLOW 

During their propagation,  the acoustical waves lose some energy. The causes of  these losses 
are multiple: 

I - - A  geometrical damping, that is the case for the spherical waves. 
2 - -The  momentum exchanges associated with the viscosity of  the fluid, the exchanges 

associated to the thermal conductivity. 
3 - -The  molecular relaxation due to the non-equilibrium internal energy modes and the 

chemical relaxation. 
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the Basset term ( ); the whole terms ( - ). 
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If the fluid contains particles, then other sources of  damping may appear: 
4 ~ T h e  momentum relaxation of the particles. Indeed, the velocity difference between the two 

phases involves the dissipation of  energy at the surface and in the wake of the particle, 
hence a decrease of the acoustical intensity. 

5 - -The  relaxation temperature: some temperature gradients, due to the propagation of the 
acoustical wave, appear at the surface of the particle. Thus, important losses occur by 
thermal diffusion. 

6--Mass exchanges during evaporation, condensation or combustion of  the droplets. 

It should be noted that the damping in a turbulent flow is larger than the damping in the 
laminar flow. Indeed, the acoustical waves are diffused by the velocity and the temperature 
fluctuations (Candel 1980-1981). The effect of  the particles surface tension is small for liquid or 
solid particles, this effect is no more negligible for bubbles in a liquid. The magnitude of a plane 
wave decreases with the distance x. The damping law is exponential: e x p ( - b x ) ,  b is the damping 
coefficient. 

There is no energy loss when an acoustical wave propagates in a one-phase flow, with no 
molecular or chemical relaxations and where viscous effects and thermoconduction are neglected. 
Landau & Lifschitz (1971) express the average value of  energy dissipation taking into account those 
two last phenomena. The calculation supposes that the damping is small. In that way, the relative 
decrease of magnitude is small on a distance about the wave-length: be/co ,~ 1. In this case, b may 
be expressed in term of the velocity: 

b 2pG~ c3 ( 4 ~ + ~ ) +  Cv C o 

(~ is the gas bulk viscosity, x the thermal conductivity, Cv and Cp the specific heats of the gas at 
constant volume and pressure respectively). 

These effects are often negligible. For example, in the case of air at a temperature of  288.15 K, 
we obtain: b = O(co z 10 ~3). Therefore, this dissipation is not taken into account in the following 
section, where the assumptions of the first part are maintained. In addition, the following 
assumptions are made: 

- - t he  gaseous phase is a thermally perfect gas (the thermal conductivity is negligible, Cp and 
Cv are temperature independent). 

- - t he  only exchanges between the two phases are momentum and thermal exchanges (no mass 
transfer). These exchanges occur in the immediate neighborhood of the particles. 

The kinetic relaxation time rv has been already defined in part one. From now on, we need to 
introduce a thermal relaxation time to characterize the exchanges between the gas and the particles. 
These exchanges vanish just in the case of  particles whose surface is adiabatic. The thermal 
relaxation time rt is defined as being the ratio between the excess heat and the thermal flux between 
the particle and the fluid: 

mp Cc ( T G - Tp) 
r~ = [24] 

qp 

(Cc is the specific heat of the particle, Tc and Tp the absolute temperatures of the gas and of the 
particle respectively, qo is the thermal flux between the gas and the particle.) 

If rt is large, compared to the characteristic time T of the fluid, then the particles temperature 
is nearly independent on the fluid temperature, that is the case of  inert particles. Ifr~ is much smaller 
than T then the particles temperature is strongly dependent on the fluid temperature. 

The radiative thermal exchanges are neglected to derive the expression of Yr. It is admitted that 
the heat flux qps between the particle and its surface, to the temperature Ts, and the flux between 
that surface and the gas qsG may be written as: qps = ap(Tp - Ts) and qsG = ac(Ts -- To). Since there 
is no condensation or evaporation, we are allowed to write: qp~ = q~G = qp" If the particle is not 
thermally homogeneous, Markatos (1986) gives an expression for the coefficient ap, proportional 
to the thermal conductivity of the particles. In this paper, we suppose that the particles temperature 
is uniform (T r = T~). It is equivalent to say that the particles are very small or that their thermal 
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diffusivity rises to infinity. We obtain the following result: 

qp = S h c ( T G  - Tp),  [25] 

where S is the particle surface area and hc is the convection coefficient. 
The determination of the thermal exchange coefficient he sets the same problem that we have 

met for calculating the Stokes drag force in the momentum equation. The transitory effects 
are neglected and just the local effects of  the flow around the particle are taken into account, 
The Nusselt number is: 

Nu = h c d / ×  [26] 

The Stokes assumption corresponds to a pure conduction transfer. For the case of a sphere, that 
leads to the following result: Nu = 2. That  is a reasonable assumption since the Reynolds number 
is very small. Consequently: 

qp = (7"6 - -  Tp) d~27z 

qp _ (Tc - Tp)3× [27] 
?Flp P p s r ]  ' 

where Pps is the specific density of  the particles. 
Finally: 

C~r 2 Pp~ [28] 
rt - 3× 

The introduction of correlation factors (Mach number etc.) allows to take into account the 
compressibility effects of  the flow. As for rv, it is not necessary in the framework of this analysis 
since the perturbations are very small. The thermal relaxation time may be written as a function 
of % : 

3 z~ = ~ Pr ilL, [29] 

where Pr is the Prandtl number and fl is the ratio of  the specific heats of  the two phases: C c / C p .  

Thus, in this particular case, the characteristic times have no independent values. 
Let us write the continuity, the momentum and the energy equations for each phase (two fluids 

model): 

@G 
- -  + diV(pGVG) = 0 [30] 
~t 

(continuity equation of the gas) 

~Pp 
~ -  + d iv (ppVp)  = 0 

(continuity equation of the particles) 

In these two equations, the mass densities are given by: 

[311 

PG = PC~ [32a] 

pp = pp~(1 -- c) [32b] 

E is the volume fraction occupied by the gaseous phase. 

c3vG C3Vp 
PG ~ -  q- PcVG" g~d'd (VG) + gr~d (p) + p p ~ -  + ppvp" g~-~d (vp) = 0 [33] 

(momentum equation of the mixture) 

The momentum equation of the dispersed phase has been studied in the first part  ([3]). The body 
forces are ignored. 
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e being the internal energy per unit mass, we have: 

0(eG + v~/2) 
PG + pGVG • gTa*d (eG + V~/2) + div(pvG) 

Ot 

(conservation of  energy of  the mixture) 

(ep + v ~/2) 
+ PP Ot + ppvp. g ra'd (ep q.- v~/2) = 0 [34] 

OTp To - Tp [351 
c3--t- + v p" g ~ d  Tp - z---~ 

(internal energy balance of  the dispersed phase) 

p = pGrTG = pGsErTG [36] 

(state equation of the perfect gas of  constant r = R/M,  R is the universal gas constant: 
R = 8.3144 J /K/mol  and M is the gram molecular weight of  the gas) 

We take for r the value usually used for one-phase flow. 
The steady state is characterized by the phases equilibrium: the velocity is equal to zero and the 

temperature is uniform. The linearization is carried out by writing: 

With: 

PG = PGo + P ~ Pp = Ppo + P 

T o =  TGo+ T~ Tp= Tpo+ T~ 
/ 

e G = ego + e ~ ep = epo --I- e p 

V G = VGo "]- VG Vp = Vpo + V;  

P =Po + P '  

/ 
Around To, e6 and ep may be written: 

[37] 

Too = Tpo = To [38a] 

Voo = %0 = 0 [38b] 

t ec = Cv T~ [39a] 
t p ep = C¢ Tp [39b] 

Neglecting the second order terms, we obtain a seven equation linear system with the seven 
unknown variables ' ' ' T '  ' ' p ' .  PG,  Pp ,  TG, p, v G, vp, 

Op6 
0~  + PGo div(v~) = 0 [40a] 

ap; 
Ot + Ppo div(vp) = 0 [40b] 

(continuity equations) 

(momentum equation) 

~v~ ~v; 
PGo ~ -  + gTd'd (p ' )  + Ppo ~ -  = 0 [41] 

(energy balance) 

~e~ ~e; 
Pco ~ + Ppo -~-  + Po div(v~) = 0 [42a] 

dTp _ T ~ -  T~ [42b] 
0t z, 
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p" = r(poo T'c + p'~ Too) [43] 
(state equation) 

We have to add [14] to this system. The entropy balance of the medium allows us to show that 
the perturbation propagates isentropically in the limit of the first order approximation. 

It is not easy to obtain a single equation with only one variable since the expression of the Basset 
history term is complicated. The final result is a two equation system with the respective unknowns: 
v~ and v~: 

(() (())) a vo a3Vp 2 a %  avo 
+ x T i r - c  o A Vi- + ~ t  ~ t  7 i -  

C~(x/3 + 1)(A(v~) + ro~ ( r ~  (v;))) 4 (1 + X/3y) (O2v~ 02v;\ 
- - r t  r~ \ -~-5-+ X ~ - ) =  0 [44] 

A being the Laplacian, r~t the rotational. X is equal to the ratio Ppo/Poo. 
Equation [14] is unchanged. The speed of sound Co in the gas alone is: Co = 7 x / ~ o ,  7 is the specific 

heat ratio of gas: Cp/Cv. 
For plane acoustical waves, the solutions where the quantities Vo and Vp of [15a] and [15b] are 

periodic and space-dependent functions are considered: 

v~ = v i i  = vo exp[i(cot - K" r)]i [45a] 

Vp = v~i = vp exp[i(cot -- K- r)]i [45b] 

co is the angular frequency, K the wave-vector and r the position vector, v o, vp are independent 
of the variables t and r, i is the direction of propagation of the acoustical wave. 

After projecting the two previous equations along the propagation direction of the wave, we 
obtain the dispersion equation: 

where z is given by [17a]: 

coK 1 + X/3 7 + icor t 
co2 1 + Xfl + icort 

(1 + Xz)  [46] 

- -  = z = F(Z, coz) =f(z,co%) [471 v; 

In this section, g is larger than 1 (liquid or solid particles in a gas). The influence on the thermal 
transfer decreases when: ? --~ !, /3 ~ 0, X --~ 0. 

Let us express the complex wave-number K as a function of the angular frequency, the sound 
velocity and damping: 

Thus: 

CO 
K = - -  -- ib [48] 

C 

1 b 2 ! .,., F1 + X/37 + icort 1 
c2 co2 = ~o ~eL-I 4-X--~ + i~-zt (1 + Xz)  [49a] 

2 b - 1  [ l + X / 3 7 + i o ) z t ( l + X z ) l  
- 2 Im [49b] 

wc c o 1 + X/3 + iwz t 

Re being the real part of the expression, Im its imaginary part. 
If X becomes very small, then the particles concentration decreases (~ ~ 1). The previous 

formulae give us effectively the characteristic values of a one-phase flow (the wave velocity is equal 
to Co and there is no damping). 

First, let us study the dispersion equation in limiting cases. As mentioned above, rv and zt are 
each dependent ([29]). 
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09~,, and 09~, tend to zero 

The particles follow perfectly the fluid velocity and the fluid temperature perturbations. 
mentioned before, the suspension is in an equilibrium state: 

As 

lim z = ze [50] 
~t" v ~ 0 

The bounded expansions of z and of the dispersion equation give the following results: 

(a) Stokes drag. z ~ 1 - i09~,, 

~ . (  1 + Xfl 
[511 Ce = Co l + X/~)(l  + X) 

092 ~ ( I  + X ) ( I  + XflV) ( 1 3Pr f12(7_ l )  ) 
b ~ ~co T,X (1 + X f l )  ] - - ~  + 2(1 +Xf l ) (1 -+Xf l~ )  [52] 

(b) Stokes drag and pressure gradient, z ~ 1 4- itov,. (1 - X)/Z. The relation between ce and Co is 
identical to the previous case. 

09 2 1(1 +X)(1  + X f l 7 ) l ' l  -- 1/Z 3Prf12(7 - 1) "~ 
b , - - - - % X  / - - - /  ) [53] 

2Co X/ 0 +---X~) \ ~ T - X -  + 2(1 + Xfl)(1 + X-fiT) 

(c) Stokes drag, pressure gradient and virtual mass effect, z ~ 1 4- i09% (1 - Z)/Z. The same 
expressions as in the case b are found. 

(d) The whole terms, z ,,, 1 4- i09~,, (1 - X)/Z. We find again the same expressions for the velocity 
and the damping. Thus in every case, we arrive at: 

~ 1 + xfl  
[54] ce = Co ( l  + x / ~ ) ( l  + x )  

This velocity is frequency, fluid viscosity and particle size independent. Its value is also smaller 
than the velocity in the gas alone since 7 > 1. 

Furthermore: 
2 2 h ~ <O2~v 09 ppsra 

- -  ~ - -  [ 5 5 ]  

Co Co 

For this limiting case, the damping coefficient is small since there is no relative motion between 
the fluid and the particles. The Biot theory also predicts a damping proportional to 092 at low 
frequencies. Our results agree with Atkinson & Kytomaa (1992) since they obtain: bet09 2r~/p. Thus, 
at low frequencies, the damping is inversely proportional to the temperature and to the gas velocity 
(in this last case, the Prandtl number is supposed to be constant). For fixed values of ;~ and X, the 
damping increases with increasing Pps. If  X is very small, we obtain: bct X. But: 

X~(I - -E) /E--~I- -E,  hence: b~ 1 - E  [56] 

The damping is proportional to the particles concentration when this is very small. 
Gibson & Toksoz (1989) and Allegra & Hawley (1972) observe the same behaviour. 

09z,. and 09r, approach infinity 

We have previously seen the meaning of 09r~ rising to infinity. For very large values of z~, the 
particles are thermally inert and do not react to the temperature fluctuations of the gas. We write: 

lim z -- z~ [57] 
(/~r v ~ 
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(a) Stokes drag. zoo = 0 

The high frequency limit for the sound speed is given by: 

Coo, ~ C o 

For the damping factor, we find: 

Co Tv 

(b) Stokes drag and pressure gradient, zoo = I/2" 

4- 

boo - 

c= = Co/,/(1 + x / z )  < Co 

X 7 1 + X ( ~ z - I .  7 - - 1 ,  
Co v 7 z + T-PT) 

Now, the wave velocity is smaller than Co and it depends on X/Z. 

(e) Stokes drag, pressure gradient and virtual mass effect, zoo = 3/(22" 4- 1) 

~/  2 x + l  
coo=Co 3 X + 1 + 2  x <c°  

boo 

(d) The whole terms, z~ = 3/(22" 4-I)  

C~Co 1 3 X + 1 + 2  z 1 

•/ y -- 1) _ X l + 2 z + 3 X (  2Z(Z-I)  F 
cSv 1 + ~ \(2Z + 1~-4-- :~ + 3X) 

3w/-}(Z - 1)X "~ + 

[58] 

[591 

[60] 

[611 

[62] 

[63] 

[64] 

G E N E R A L  CASE 

Now, let us study the wave behaviour for any values of ~ozv and tozt. Let us take the 
example of  water droplets in air (fog) with: TGo = 288.15 K and po = i.013 x l05 Pa. The physical 
characteristics of the gaseous phase are: Cp=lOi2J /kg /K ,  7=1 .401 ,  pGs=l .225kg/m 3, 

bct I - c [67] 

The Basset history term depends on the square root of the angular frequency, hence the 
proportionality between the damping and this variable. This result is consistent with the Biot 
theory. Note that Atkinson & Kytomaa (1992) find the same tendencies since they show that 
b ot (laog/r~) U2. Thus, the behaviours for large and small frequencies are very different. Furthermore, 
if the particles concentration is very small, this leads to the following linear dependence: 

{ #~ "],/2 [661 
b ~ ~ C2or~pps] 

We state that in any case the velocity co is almost equal to Co. Indeed, it must be kept in mind 
that, for large values of the relaxation times, the particles behave like an obstacle placed in the 
flow. That is why the sound speed is nearly equal to the velocity in a one-phase flow. 

The damping is found to be proportional to l/co Zv when the Basset force is omitted. If this force 
is taken into account, we have the following result: 

b X x / ~ v  / l + 2 z + 3 X (  3V/X(X- I )  ) [65] 
" CoZy l + 2 Z  \(2Z + 1)(1 + 2-X-~- 3X) 
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/~ = 1.78 × 10 -5 kg /m s, z = 2.51 × 1 0  - 2  J /ms K and  M = 29 g/mol .  F o r  the dispersed phase,  we 
have: C~ = 4.1858 × 103 J /kg /K ,  Pps = 999.099 kg /m 3. Thus,  it comes the fol lowing values: 

X = 815.59 Co = 340.087 m/s 

v = 1.453 × 10 -5 m2/s r = 286.703 J / k g / K  

Pr  = 0.7176 /3 = 4.1361 

Vv = 1.2473 × 10 -3 s v~ = 5.554 × 10 - 3 s  thus: T~/~t = 0.225 

Let  us see the different  pa rame te r s  influence on the velocity and  on the d a m p i n g  coefficient. 
The  con t inuous  curves co r r e spond  to the case where only the Stokes d rag  force is taken  into 
account  (case n u m b e r  one) and  the dashed  lines are valid when the whole  forces act on the par t ic les  
(case number  two). The  ob ta ined  curves when the vir tual  mass  effect or  the pressure  grad ien t  are  
taken  into account  are a lmos t  the same as in case number  one. 

Inf luence o f  the product  cor,~ (r, = 10 - s  m and 1 -- E =- 5.0 x 10 -4) 

We plo t  three types o f  curves: 

- - t h e  ra t io:  c / c  e as a funct ion o f  lOgl0(coTv). 
- - t h e  d a m p i n g  coefficient b as a funct ion o f  log~0(co/coo), COo = 1. 
- - t h e  reduced d a m p i n g  coefficient per  uni t  wave-length:  B = 2r~bc2/COc as a funct ion o f  

lOgl0 (coTv). 

The  curve [figure 7(a)] shows that  the velocity increases with increasing values o f  COTv, further-  
more:  Ce < C < C~ < Co. I f  the Basset force acts on the part icle,  then the acoust ica l  wave veloci ty 
decreases.  In the first case, c~ = 256.23 m/s,  c~ = 340.09 m/s,  thus: c~/c~ = 1.33. Since, the term X / X  

is very small ,  we have c~ ~- Co. We recall here tha t  the equi l ibr ium velocity does  not  depend  on 
the s tudied  c o m b i n a t i o n  o f  the forces ac t ing on the suspension.  

The reduced d a m p i n g  [figure 7(b)] first increases, reaches a m a x i m u m  value Bm for COrn, and  then 
decreases.  We  have: lOgl0(COmr~) < 0, so COm < 1/Vv. In the first case Bm = 0.66, in the second case, 
tha t  value is smal ler  since Br, = 0.64. Besides a cer tain value o f  coZy, the reduced da mp ing  ca lcula ted  
when all the forces app ly  to the part icles  is larger  than the one ob ta ined  when jus t  the Stokes d rag  
force is taken  into account .  

] . 4  - -  
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Figure 7(a). c/c c as a function of Iogl0(co¢~). Stokes drag ( 
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(b) 0.8 I 
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Figure 7(b).  B a s  a function of loglo(o~v). Stokes drag ( ); the whole terms ( - - ) .  
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Figure 7(c). b (m -I) as a function of 1ogl0(¢o/¢o0). Stokes drag ( 

I 
6.0 

); the whole terms ( - - ) .  

The figure 7(c) shows the damping b as a function of  log~0(co/co0). Besides a certain frequency, 
the damping calculated in the second case is larger than the one obtained in case number one. 
It reaches a limit value when the Basset term is overlooked but it tends to infinity in the inverse 
case (b ~ x//-~). This different behaviour does not  appear when the reduced damping is plotted. 

Influence o f  the particles concentration (r~ = lO-Sm and co = !000 tad~s) 

The velocity decreases with 1 - c  [figure 7(d)]. The damping increases for increasing values of  
the particles concentration [figure 7(e)]. We remark that the velocity is smaller when the Basset 
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Figure 7(e), b (m -1) as a function of 1 - E .  Stokes drag ( 
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• .. ); the whole terms ( - - - ) .  

term is taken into considerat ion.  For  this given angular frequency, the Basset term reduces the 
damping.  Those  last results are predictable from figure 7. 

Inf luence o f  part ic les  radius (1 - c = 5 x 1 0  - 4  and  to = 1000 tad~s) 

As was  expected from the study o f  the velocity as a funct ion o f  tory, the velocity increases from cc 
to c~ and the Basset term involves  a decrease o f  its value [figure 7(f)]. For  the damping  [figure 7(g)], 
we observe a n o n - m o n o t o n i c  behaviour.  The  damping  first increases quickly and then decreases 
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F i g u r e  7(g) .  b (m 1) as  a f u n c t i o n  o f  r,~ (m) .  S t o k e s  d r a g  ( ); the  w h o l e  t e r m s  ( - ). 
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Figure  8(a). Thermal ly  inert  particles: zt/rv = 100, B as a funct ion o f  loglo(Ogrv). 

1 . 5 0  - 

(b )  

1 . 2 5  

1 . 0 0  

I ] 0.75 r I 
-3 .0  - i  .5 0 1.5 3.0 

iogjo  (¢o Xv) 

Figure  8(b). Thermal ly  inert particles: zt/z~ = 100, c/c~ as a funct ion of  Iog,~(~ozv). 
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Figure  9(a). Particles in a rarefied gas or  easily deformable  particles: "~t/r~ = 1/100, B as a funct ion of  
logto(mr,).  
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Figure  9(b). Particles in a rarefied gas or  easily deformable  particles: r,/r~ = 1/100, c /G as a funct ion of  
log.l(o~zv). 
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after having reached a maximum in r = rm. It is shown that: 

{ 9/~ "] ''2 
r m "~ \2°~ppsJ [68] 

Urick (1948) gives an explanation for this phenomenon. He shows that the damping coefficient 
is proportional to the celerities ratio: 

(vo - %)2 b ~ ~ [69] 
v~ 

The sign . . . .  indicates the mean temporal value of the concerned quantity. If  the particles 
grow bigger, they move more difficultly and (v G -  Vp) 2 increases since Vp decreases. Thus, the 
damping increases. But when the radius increases, the total surface of the particles decreases making 
the damping smaller (the particles concentration being kept constant). 

For small values of  the radius, the damping in case number one is larger than the one calculated 
in case number two, this behaviour reverses when the radius increases. 

Influence o f  the ratio z,./r, 

To obtain [29], we suppose that the particles are very small or that their thermal diffusivity is 
infinite. For gases, the Prandtl number is nearly equal to unity. Furthermore, in the most usual 
cases, the fl order of  magnitude is also one. Then rv and r~ have approximately the same value: 
vv/~, = O(1). I f  the thermal diffusivity of  the particle is small or if the particle is big, [29] is no longer 
valid since the temperature is no longer uniform in the sphere. For a particle which is very thermally 
inert, we may write: zv/rt ~ 1. 

The inverse case: vv/z~ ~> 1, is more difficult to realize. Indeed, the case of  a particle whose thermal 
diffusivity is infinite has been studied, so we must act on z~. We should find a kinetic relaxation 
time which is larger than the one expected in the Stokes theory. It must be kept in mind that this 
theory is only applicable for very small particles' Reynolds numbers, the particles being spherical, 
rigid and perfectly smooth. I f  the roughness of  the particle is large, then it follows the fluid motion 
easily. On the other hand, if the particle is made of a material which is not very dense or not very 
viscous, then internal movements occur inside the particle. This transfer momentum is not used 
to carry the particle away, thus rv increases. This example corresponds to easily deformable 
particles. Particles moving in a rarefied gas also have a large kinetic relaxation time since the fluid 
slips on the particle surface. In that way, the spheres have difficulty in following the fluid motion. 
Acting on the particle radius to obtain really different relaxation times is more delicate since rv and 
rt are both proportional to the radius. Let us study two cases taking different values for the ratio 
of  the relaxation times. 

Thermally inert particles: z,/r, = 100 

The reduced damping curve of the acoustical wave has two distinct maxima: one for the thermal 
transfer ~Oml---- l/rt: Bml = 0.23, one for the momentum transfer ~Om2 = i/rv: Br,2 = 0.64. Thus the 
maximum reduced damping for the momentum transfer is larger than the one obtained for the 
thermal transfer. The sound velocity always increases with increasing values of  ~orv. A plateau 
appears on the curve on an area next to ~Om~ (figure 8). 

Particles in a rarefied gas or easily deformable particles: r,/r,. = 1/I00 

The remarks are identical to the previous case. The first maximum verifies mm~ = l/rv : Bm~ -- 0.72, 
this damping is due to the momentum transfer. For the second one, we have: ~Om2 = l / T t :  Bm2 = 0.12. 
Thus, the magnitude of  the first maximum is larger than the magnitude of the thermal transfer. 
The sound speed increases with increasing values of  ~ozv and the celerities ratio curve has got a 
plateau near ~Om2 (figure 9). 

C O N C L U S I O N  

The first part of  this study has shown that, in most of  the cases, the unsteady terms are not 
negligible. They may be ignored when the particles are much denser than the fluid. 
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The influence of the Basset term is important for intermediate values of the reduced angular 
frequency tnx. It becomes negligible for small or large values of  this quantity. The Basset term 
influence also decreases when the ratio of the mass densities Z becomes large. For small Z the history 
term becomes really important.  That is the case of small bubbles in a liquid. Such a case, y. ---* 0, 
can hardly be observed in a gas. 

The limitations of  the method must be pointed out since the perturbations have been linearized. 
To get further in the study, we should treat concrete flow cases. 

In the second part, we have studied the influences of the unsteady forces on the velocity and 
the damping of an acoustical wave in a two-phase flow. As the former treatment, we have 
made an analysis with small oscillating perturbations taking into account the compressibility of  
the studied medium and the thermal exchanges between the two phases. Using the dispersion 
equation, we show that: if ),, the isentropical coefficient of the gas, tends to unity, or/~, ratio of 
the specific heat of  the particles and the gas, tends to zero, or X, ratio of the partial mass densities 
of  the particles and the gas, tends to zero, then the influence of the thermal relaxation decreases. 
The last case corresponds to a one-phase fluid, thus the velocity of sound is co and the damping 
vanishes. 

For small values of  O3Zv (equilibrium state), the velocity is smaller than the one obtained in 
a one-phase flow. It is also independent of the different studied combinations of  the forces. 
This velocity does not depend on the sound frequency and the gas viscosity. The equilibrium 
damping is proportional  to  o~2ppsr~/Co#, the dependence on ~0 2 agrees with the Biot theory. If 
the particles concentration is small enough, then the damping is linearly proportional to this 
concentration. 

For large values of  mzv, the results are very different. The velocity c~ is approximately equal 
to Co. The damping depends on 1/(ZvCo), if the Basset history term is neglected. It becomes 
proportional  to x/(~o/(zvC2o)) when this force is taken into consideration. The Biot theory also 
indicates a proportionality to x ~ "  If the particles concentration is small, then the damping is again 
linearly proportional  to the value. 

In the general case, a complete study of the influence of all the parameters is difficult to realize. 
Indeed, in our analysis, there are five nondimensional parameters: ;(, ~,/~, 7, Pr. We have chosen 
to study evolution tendencies for a fog at the standard temperature and pressure conditions. This 
concrete case shows that the velocity increases with increasing values of ~0~ V and decreases with 
1 - ~ .  Its value is always smaller than the velocity in a one-phase flow. The reduced damping, as 
a function of ~vv, first increases and then decreases, the greatest value is obtained for ~0~ ~_ I. The 
variations, that occur around this particular point, explain the importance of particles presence in 
certain phenomena, such as unstabilities in rocket engines. The damping increases with increasing 
angular frequency and increasing particles concentration. The sound velocity increases with 
increasing particles radius. The damping, as a function of the particles' sizes, first increases, reaches 
a maximum value and finally decreases. 

In the studied cases, the two relaxation times have the same magnitude. If their values are very 
different, we state the presence of two peaks on the reduced damping curve. One peak is due to 
the momentum transfer, the other is due to the thermal transfer. The amplitude of the first one 
is, in the present case, always larger than the amplitude of the second one. The velocity, as a 
function of co~v, always increases and we note now the presence of a plateau in the neighborhood 
of ~t'~ = 1. 

As was expected from the first part, the influence of the unsteady terms is not important 
in this case since Z is large (liquid or solid particles in a gas). The Basset force plays an 
important  part  in acoustics, effectively it makes the damping proportional to x ~  for 
large angular frequencies. The sound dispersion is mainly determined by the viscous 
interactions between the gas and the particles. Nevertheless, the effects of  heat transfer are 
significant and can not be neglected when the two relaxation times ratio is really different from 
unity. 

The present method is not an exhaustive study of the unsteady terms effects. Nevertheless it gives 
us information and tendencies on a large range of frequencies. It might be useful for the numerician 
or the researcher who, most often, overlook the unstationary terms in the particles momentum 
equation. 
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